Skip to content
Dirty Dozen Single Game Stats ( 0000-00-00 ) Dirty Dozen: 0 : 0
No. | Pos | First Name | Last Name | Avg | AB | R | 1B | 2B | 3B | HR | XBH | RBI | S | BB | FC | K | E | OFA | SLG | OBP | OPS | RC | TAv |
---|
0 | IF | Mary Pat | Schneider | 0.667 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.667 | 0.667 | 1.334 | 1.333 | 1.333 |
0 | LC | Jeanne | Harrington | 0.667 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.667 | 0.667 | 1.334 | 1.333 | 1.333 |
0 | RC | Patty | Boley | 0.250 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0.250 | 0.400 | 0.650 | 0.400 | 0.700 |
0 | P | Edie | Kennedy | 0.750 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.750 | 0.750 | 1.500 | 2.250 | 1.500 |
0 | P | Karen | Brilmyer | 0.500 | 4 | 1 | 2 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0.500 | 0.500 | 1.000 | 1.000 | 1.000 |
0 | P | Marla | Boyer | 0.333 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0.333 | 0.666 | 0.333 | 0.667 |
0 | P | Paulette | Saffle | 1.000 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1.000 | 1.000 | 2.000 | 3.000 | 2.000 |
0 | P | Patty | Hayes | 0.333 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0.333 | 0.666 | 0.333 | 0.667 |
0 | P | Pam | Napoletano | 0.000 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0 | P | Dee | Applehaus | 0.750 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.750 | 0.750 | 1.500 | 2.250 | 1.500 |
0 | P | Karon | Stockman | 0.333 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0.333 | 0.666 | 0.333 | 0.667 |
0 | SS | Diane | Evans | 0.500 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.500 | 0.500 | 1.000 | 1.000 | 1.000 |
0 | 1B | Patty | Miller | 0.333 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0.333 | 0.600 | 0.933 | 0.600 | 1.000 |
0 | LF | Barb | Kimball | 0.333 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0.333 | 0.666 | 0.333 | 0.667 |
0 | OF | Becky | Hafer | 0.500 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.500 | 0.500 | 1.000 | 1.000 | 1.000 |
0 | P | Natalie | Pascarella | 0.250 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0.250 | 0.400 | 0.650 | 0.400 | 0.700 |
0 | LF | Kim | Thomas | 0.750 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.750 | 0.750 | 1.500 | 2.250 | 1.500 |
0 | 2B | Bobby | Lukens | 0.333 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.333 | 0.500 | 0.833 | 0.500 | 0.875 |
0 | P | Cathy | Norris | 0.333 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0.333 | 0.500 | 0.833 | 0.500 | 0.875 |
0 | P | Jan | Schiffler | 0.500 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.500 | 0.500 | 1.000 | 0.500 | 1.000 |
Confused by what some of these abbreviations mean? Check out our Stats Glossary